1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
| import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit import math
def func(x, a,u, sig): return a*(np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig))
x = [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] x=np.array(x) print('x is :\n',x) num = [365,398,480,619,705,761,752,668,722,888,730,707,696,544,505,442,370,377,311,267,221,165,115,81,56] y = np.array(num) print('y is :\n',y)
popt, pcov = curve_fit(func, x, y,p0=[0,1,2])
a = popt[0] u = popt[1] sig = popt[2]
yvals = func(x,a,u,sig) print('系数a:', a) print('系数u:', u) print('系数sig:', sig)
plt.rcParams['font.sans-serif']=['SimHei'] plt.xlabel('统计天数') plt.ylabel('人数') plot1 = plt.plot(x, y, 's',label='每日增加确诊患者人数',color='blue') x = np.linspace(u - 3*sig, u + 3*sig, 50) x_01 = np.linspace(u - 6 * sig, u + 6 * sig, 50) y_sig = a* ( np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig) ) plt.plot(x, y_sig, "r-", linewidth=2)
plt.grid(True) plt.legend(loc=2) plt.title('每日增长高斯曲线') plt.show()
|